
От классических реактивов, проверенных временем - к передовым реагентам, опережающим время

Анемия

- АНЕМИИ группа заболеваний, характеризующаяся снижением содержания в крови гемоглобина, которое сказывается на качестве жизни пациента и может привести к тяжелым осложнениям
- Анемии всегда вторичны, т. е. являются одним из симптомов какого-то общего заболевания
- Дифференциальная диагностика типа анемии имеет решающее значение для постановки правильного диагноза и эффективного лечения

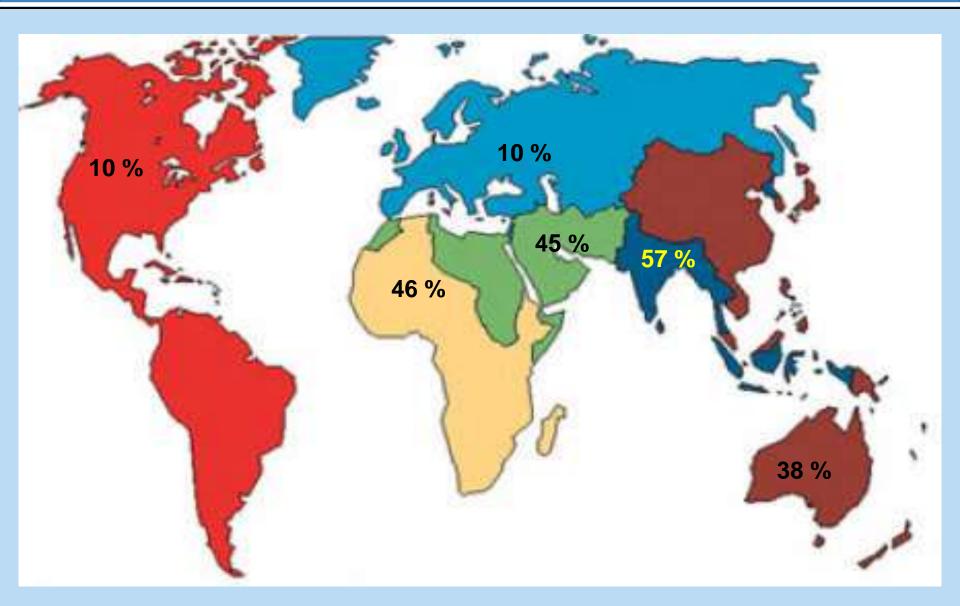
Железодефицитная анемия

- Железодефицитная анемия (ЖДА) самый распространенный анемический синдром
- Составляет 80% заболеваемости всеми видами анемий
- Основная причина- недостаток железа в организме
- Для эффективной диагностики железодефицитных анемий необходимо комплексное определение показателей метаболизма железа

Grathethka B03

- Согласно статистике ВОЗ дефицит железа входит в число 10 наиболее опасных факторов риска развития различных заболеваний, нетрудоспособности и смертности во всем мире
- 2 миллиарда человек страдают ЖДА
- Скрытый железодефицит наблюдается у 3,5 миллиарда человек
- ЖДА является причиной снижения работоспособности у взрослых, увеличения восприимчивости к вирусным инфекциям, вызывает задержку роста и развития у детей

48% of children under 2 years 53% of school-age children


42% of women

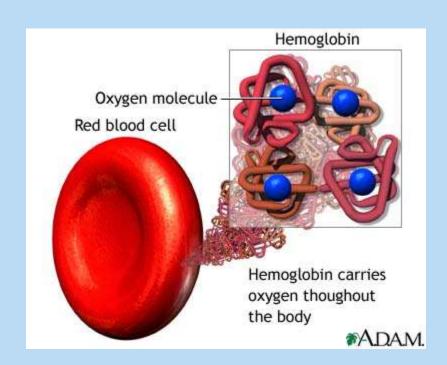
51% of pregnant women

25% of men

ДИАКОН Диагностические системы

Распространение ЖДА в мире (статистика воз)

Pond meness s oprahhsme


- Железо (Fe) один из важнейших биокатализаторов в организме человека, необходимый для роста и выживания
- Присутствует в 2-х формах: Fe2+ (восстановленное) и Fe3+ (окисленное)
- Обладает уникальной способностью быть как донором, так и акцептором электронов

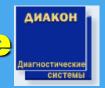
Является интегральной частью многих белков и ферментов

Функции железа

- Перенос кислорода
- ✓ Гемоглобин
- Запасание кислорода
- ✓ Миоглобин
- Продуцирование энергии
- ✓ Цитохромы (окислительное фосфорилирование)
- ✓ Ферменты цикла Кребса

ESSUEXX SUHEXX SELSO SELLOO SELLOO SELLOO SELLESTOO SELL

- Общее количество железа в организме –
 3-5 г (норма).
- Источники железа при биосинтезе железо содержащих белков:
- 1) Экзогенный пищевые продукты
- Средний суточный прием железа с пищей –
 20 мг
- Всасывается менее 10 % от этого количества (1- 2 мг/сутки)
- Покрывает физиологические потери железа
- 2) Эндогенный железо, освобождающееся при распаде гемоглобина в макрофагах (21-24 мг/сутки) связывается, сохраняется организмом и используется вновь для синтеза гемоглобина (97% ежедневной потребности в железе)



Токсичность железа

- В свободном виде железо обладает токсическим эффектом (катализирует превращение перекиси водорода в свободные радикалы)
- В организме атомы железа связаны с белками для предотвращения повреждений клеток и тканей

Баспределение железа в обцинизме

Компонент	МГ	%
Гемоглобин	2300	60 - 65
Ферритин	500 - 550	12 -15
Гемосидерин	500 - 550	12 -15
Миоглобин	230 - 280	8 - 9
Цитохромы, каталазы	100	3 - 5
Трансферрин	3	0.1 – 0.2
Всего	3500 - 4000	100

Одмен железя в обцинаме

Особенности метаболизма железа

- Нет механизма физиологической экскреции
- Реутилизация железа в организме
- Железо, образовавшееся при распаде гемоглобина из зрелых эритроцитов в макрофагах печени, селезенки и костном мозге, связывается с белками (трансферрином или ферритином) и вновь утилизируется или поступает на хранение

Гомеостаз железа

В поддержании гомеостаза железа наиболее важными являются три механизма:

- Адсорбция железа из продуктов питания в тонком кишечнике
- Система IRE/IRP (Iron Responsive Element/Iron Regulatory Protein), регулирующая внутриклеточное поступление железа или его депонирование в ферритине.
- Рециркуляция железа из эритроцитов, что обеспечивает основные потребности железа при эритропоэзе

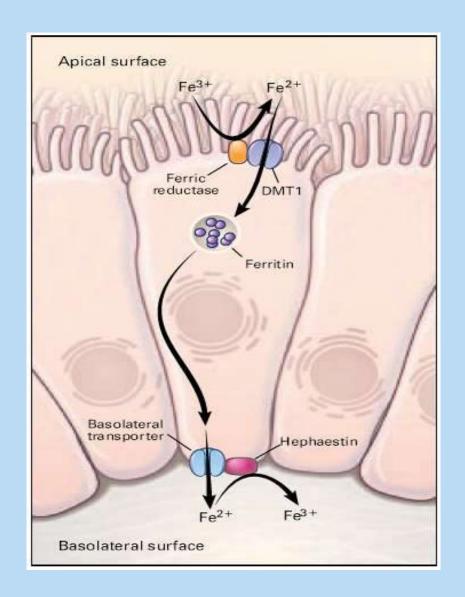
Стадии метаболизма железа I. Адсорбция железа в кишечнике

УЧсовопии жечезя

Всасывание железа зависит от:

- Возраста, обеспеченности организма железом
- Состояния желудочно-кишечного тракта (нормальная секреция желудочного сока)
- Количества и химических форм поступающего железа (гемовое и негемовое железо)
- Количества и форм прочих компонентов пищи (аскорбиновая кислота, кальций, фитаты, чай, кофе)

Часоропуна гемового железя

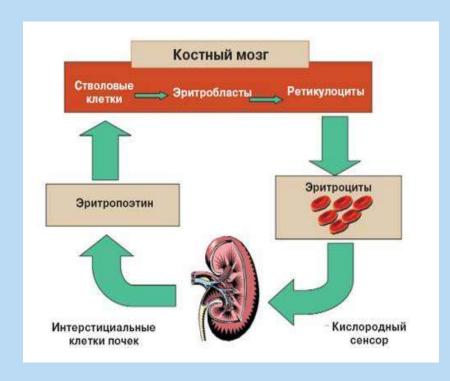


- Основное место всасывания энтероциты тонкого кишечника
- Железо попадает в энтероцит в составе гема путем эндоцитоза после слияния со специфическим рецептором.
- Гем, находящийся в эндосоме, подвергается воздействию гемоксигеназы с образованием Fe2+ и билирубина
- Транспорт гемового железа осуществляется тем же способом, что и негемового
- Избыток железа может запасаться во внутриклеточном ферритине

Адсорбция негемового железа

- Ионы Fe 3+ должны пересечь 2 мембраны энтероцита для того, чтобы достичь плазмы
- Каждый транспортный белок связан с ферментом, который меняет окислительный статус железа
- Апикальный: DMT 1 связан с ферриредуктазой, конвертирующей Fe3+ в Fe2+
- Базолатеральный: Гефестин трансмембранная медьсодержащая феррооксидаза, конвертирующая Fe2+ в Fe3+
- Ферропортин основной транспортер железа из клеток, находящийся на поверхности энтероцитов, макрофагов и гепатоцитов

Регуляция адсорбции железа



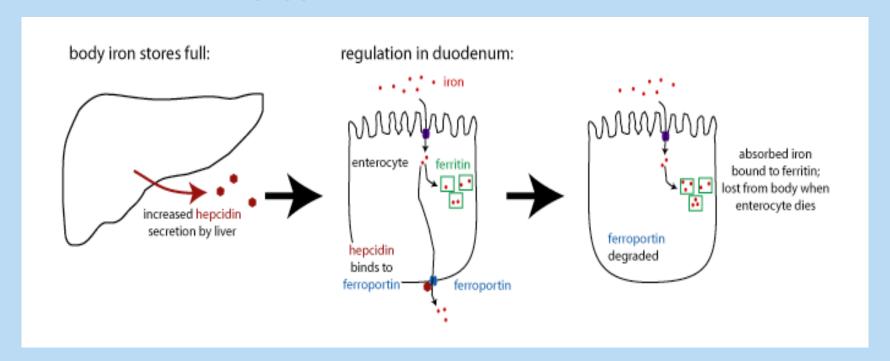
- В норме адсорбция железа в кишечнике изменяется обратно пропорционально количеству запасенного железа и прямо пропорционально активности эритропоэза
- Предполагается существование 2 регуляторов:
- Stock- зависимый осуществляет контроль содержания железа в организме, увеличивает абсорбцию в кишечнике при снижении запасов железа
- Эритрозависимый регулирует потребности эритропоэза

- (OLLE) HRLEOUOGLKGE HOMGOL SECOUOGLKGE GOLFUNNIKLE

- Гормон дифференцировки
- Активирует митоз и созревание эритроцитов из клетокпредшественников эритроцитарного ряда
- Вырабатывается почками (90 %) и купферовскими клетками печени (10%).
- Уровень синтеза ЭПО зависит от степени насыщения крови кислородом
- Стимуляция эритропоэза активирует механизмы, повышающие абсорбцию железа

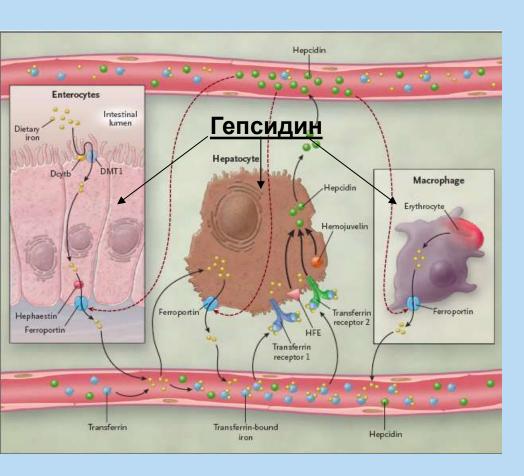
Тепсидин – негативный регуляторамкон адсорбции железа

Гепсидин - полипептид (9.4 кД), 25 аминокислот


- Обладает антимикробным действием (повреждает мембрану бактерий)
- Синтезируется в печени, незначительные количества в почках, сердечной и скелетных мышцах и мозге
- Синтез стимулируется при заполнении запасов железа, воспалениях и бактериальных инфекциях
- Секретируется в мочу
- Возрастание синтеза гепсидина при насыщенности железом приводит к ингибированию

его абсорбции в кишечнике.

Межанизм действия гепсидинами

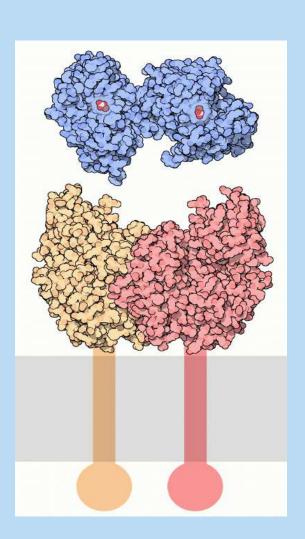


Гепсидин связывается с ферропортином и вызывает его деградацию. В результате большая часть железа остается в энтероците и запасается в ферритине

Гепсидин- гормон, регулирующий обмен железа

Основная функция – регуляция концентрации железа в плазме и распределения его в тканях

- Ингибирование абсорбции в кишечнике
- Ингибирование мобилизации железа запаса в печени
- Ингибирование реутилизации железа в макрофагах



Стадии метаболизма железа II. Транспорт (распределение)

Транспорт жэлэээ (ТРАНСФЕРРИН)

- Трансферрин глобулярный белок,
 отвечает за транспорт железа в плазме
- Синтезируется в печени в зависимости от потребностей и запаса железа
- Каждая молекула трансферрина может связать максимум 2 иона железа Fe3+, связанного с бикарбонатом.
- Биологическая функция трансферрина:
 - 1) образование диссоциирующих комплексов с железом
 - 2) обеспечение легкодоступного железа для синтеза гемоглобина
 - 3) распределение железа в организме.

Трансферрин- «отрицательный» реактант острой фазы

- Концентрация трансферрина уменьшается в реакциях острой фазы (инфекциях, хронических воспалениях, опухолях), идиопатическом гемохроматозе, гемосидерозе
- Основные причины торможение синтетических процессов в гепатоцитах при хроническом гепатите, циррозе печени, хронической нефропатии, голодании, неопластических процессах

Общая и ненасыщенная Major Cocoo Company Cocoo Company Cocoo Company Cocoo Company Cocoo Company Cocoo Company Cocoo Coco

В норме трансферрин насыщен железом на 30%.

Ненасыщенная железосвязывающая способность сыворотки -НЖСС - дополнительное количество железа, которое может связаться с трансферрином.

Общая железосвязывающая способностью сыворотки -ОЖСС максимальное количество железа, которое может присоединить

трансферрин до своего полного насыщения.

ОЖСС складывается из:

- насыщенной железом части трансферрина
- и ненасыщенной НЖСС ОЖСС= Сывороточное железо + НЖСС

ОЖСС- альтернатива прямого измерения трансферрина

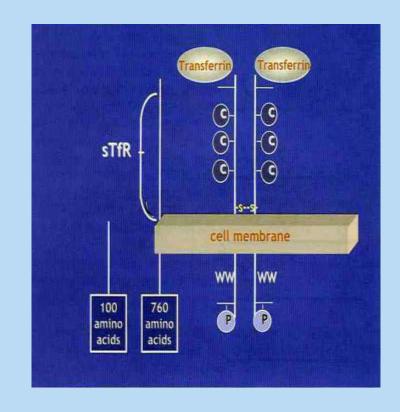
Насыщение трансферрина (НГ)

Коэффициент насыщения трансферрина - отношение количества железа, связанного с трансферрином к ОЖСС:

HT (%) = 3.98 [Железо (мкмоль/л) / Трансферрин (г/л)

Диагностическое значение НТ

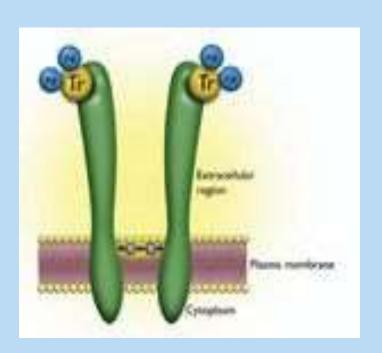
- Маркер доступности железа для эритропоэза
- Снижается при ЖДА и АХБ
- Используется для скрининга гемохроматоза и исключения перегрузки железом


Рецепторы трансферрина (РТ)

 Количество железа, поступающего в клетку прямо пропорционально числу специфичных рецепторов плазматической мембраны (sTR)

Структура рецептора:

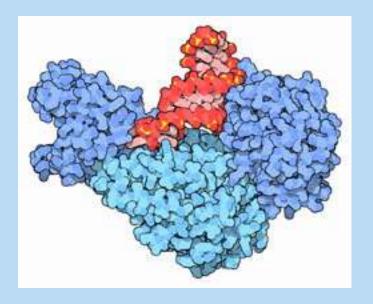
 Две одинаковые полипептидные цепи, проходящие сквозь мембрану клетки, связаны несколькими дисульфидными мостиками.



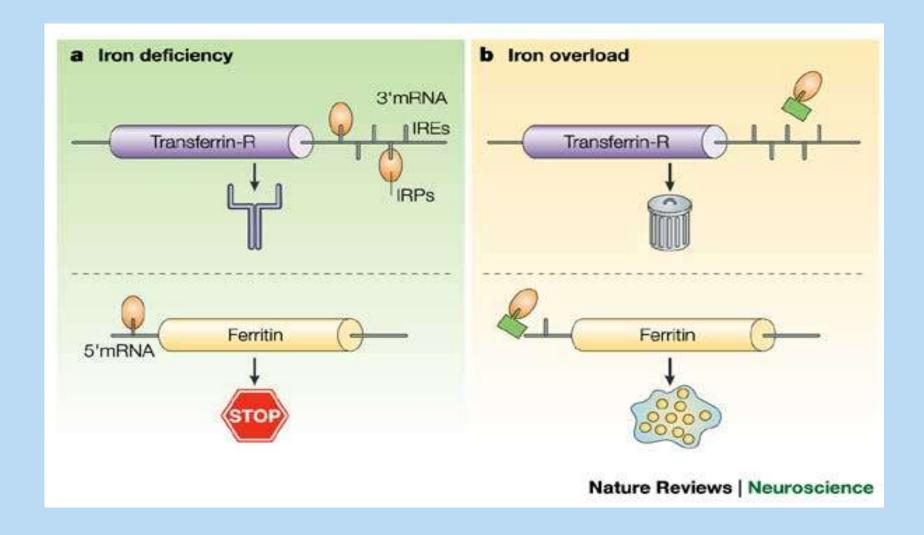
 Каждый рецептор связывает 2 молекулы трансферрина

трансферына трансферына Викореры

- При повышенной потребности в железе количество РТ на поверхности клетки увеличивается.
- Внеклеточная часть рецептора подвергается атаке протеаз
- От рецептора отделяется и попадает в кровь пептид – растворимымй рецептор трансферрина (soluble transferrin receptors, sTfR)
- Уровень sTfR в крови отражает активность цикла трансферрина.
- При недостатке железа количество sTfR возрастает, при перегрузке железом снижается.

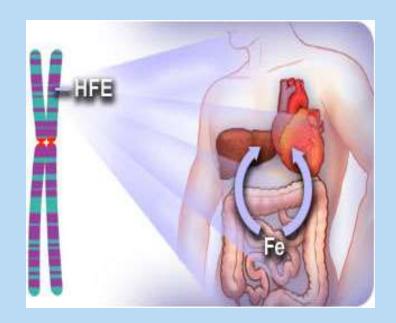

Диагностическое значение STfR

- Концентрация sTfR определяется только запасами железа и не зависит от наличия острой фазы воспаления
- Уровень sTfR, в отличие от уровня ферритина, является хорошим показателем дефицита железа даже при наличии воспаления
- При ЖДА и АХБ уровень sTfR повышен
- Мониторинг уровня sTfR позволяет определить терапевтический успех применения эритропоэтина.
- При стимуляции эритропоэтической системы, sTfR начинает повышаться

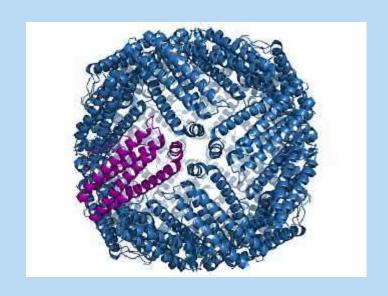

Количество рецепторов трансферрина диакон (РТ) зависит от уровня железа

- Синтез РТ регулируется на уровне м- РНК системой внутриклеточных железо-регулирующих белков ЖРБ или IRP (Iron Regulatory Proteins)
- м- РНК содержат шпилечные петли железочувствительные элементы (Iron Responsive Elements, IRE)
- Эти участки мРНК могут взаимодействовать с IRP

Трансляционная регуляция sTfR и ферритина



Регуляция рецепторов трансферрина


- Мембранный белок НГЕ, ассоциированный с РТ регулирует их эндоцитоз в клетку.
- Мутации в гене НГЕ
 приводят к повышенному
 захвату железа в клетку и к
 развитию первичного
 наследственного

гемохроматоза

Стадии метаболизма железа III. Депонирование

HKTRIGGE

- Ферритин основной белок хранения запасного железа для синтеза гемоглобина
- Содержит 15-20 % общего железа в организме взрослого человека
- 24 независимых глобулярных пептида, окружающих ядро трехвалентного железооксигидроксифосфата
- В свободном от железа виде белок называется апоферритином
- Функция ферритина:
- Место хранения
- Легко доступный резерв железа

Изоформы ферритина

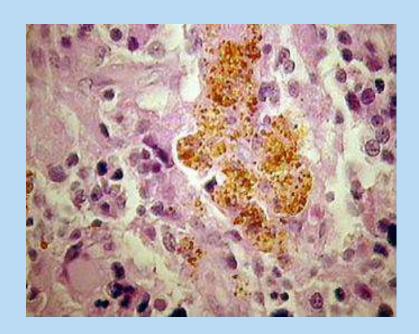
Основные L- изоформы Богаты железом Кислотные Н- изоформы Бедны железом

Локализованы в: Печени Селезенке Костном мозге Локализованы в: Плаценте Сердце Опухолях

Ферритин

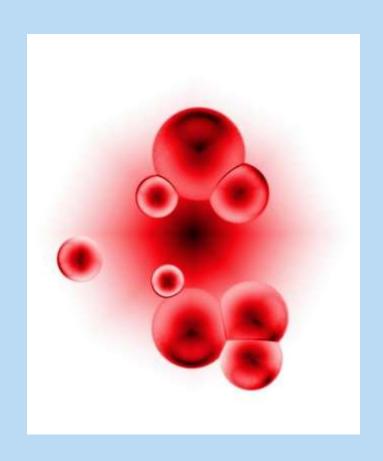
- Ферритин является ключевым параметром для определения причины анемии поскольку его концентрация напрямую отражает количество запасов железа (за исключением нарушений распределения железа)
- Соотношение запасов железа и сывороточного ферритина =
 - 1 µg/L свороточного ферритина соответствует примерно 10 мг железа запаса

Ферритин - «положительный» реактант острой фазы


Повышение содержания ферритина в сыворотке крови может быть выявлено при:

- Воспалительных процессах (легочные инфекции, остеомиелит, артрит, системная красная волчанка, ожоги)
- Некоторых острых и хронических заболеваниях с поражением печеночных клеток (алкогольное поражение печени, гепатит)
- Раке молочной железы, остром миелобластном и лимфобластном лейкозе, лимфогранулематозе
- У пациентов, находящихся на гемодиализе. При этом в костном мозге может быть одновременно дефицит железа
- Избыточном содержании железа (гемохроматоз)

LewochtebnH


- Гемосидерин производное ферритина с более высокой концентрацией железа
- Откладывается при избытке железа
- Обнаруживается в макрофагах костного мозга, селезенки, печени (купферовских клетках)
- Нерастворим в воде
- Трудно мобилизуемая форма железа
- Легко различим в световом микроскопе в реакции Перлса

метаболизма железа метаболизма железа

- Трансферрин
- sTfR
- Ферритин
- IRE-BP
- DMT1
- Гефестин
- Ферропортин
- Гепсидин

Нарушения обмена железа

Нарушении обмена железа

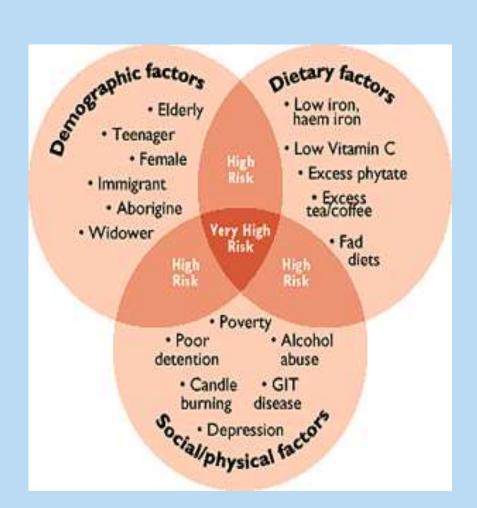
- Дефицит железодефицитная анемия (ЖДА)
- Нарушение распределения железа анемия хронической болезни или воспаления
- Нарушение утилизации железа анемия почечной болезни
- Кардио ренальный анемический синдром
- Перегрузка гемохроматоз
- Нарушения эритропоэза не связанные с железом: например дефицит витамина В12 и /или фолиевой кислоты (мегалобластная анемия)

Железодефицитная анемия (ЖДА)

Железодефицитная анемия

- Широко распространенное патологическое состояние, характеризующееся снижением количества железа в организме
- ЖДА составляют 80 % всех анемий
- Причиной дефицита железа является нарушение его баланса в сторону преобладания расходования железа над поступлением, наблюдаемое при различных физиологических

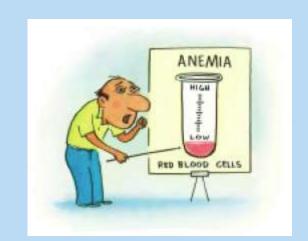
Нормальная концентрация


Анемия

состояниях или заболеваниях

Причины ЖДА

- 1. Хроническая кровопотеря
- 2. Повышенная потребность в железе
- Беременность
- Лактация
- Быстрый рост в пубертатном периоде
- 3. Донорство
- 4. Нарушение транспорта железа
- Наследственная атрансферинемия
- Приобретенная гипотрансферинемия
- 5. Нарушение всасывания (хронический энтерит, резекция тонкой кишки, лямблиоз, глистные инвазии)

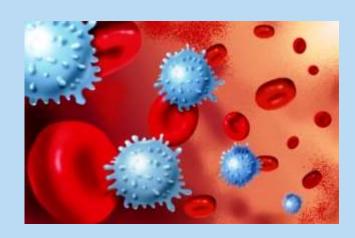

Ctalinn XXIV

Истощение запасов (латентный железодефицит)

Уменьшение уровня транспортного железа, насыщения трансферрина

Снижение активности железосодержащих ферментов

Нарушение синтеза гемоглобина


Лабораторные параметры при ЖДА

Показатель	Значение
Общий анализ крови	Микроцитарная, гипохромная анемия
Сывороточное железо	Снижено
ОЖСС	Повышена
Ферритин	Снижен (< 100 нг/мл)
Трансферрин	Повышен
Насыщение трансферрина	< 15 %
Уровень sTfR	Повышен
Соотношение концентрации sTfR/log концентрации ферритина	Высокое (>2)

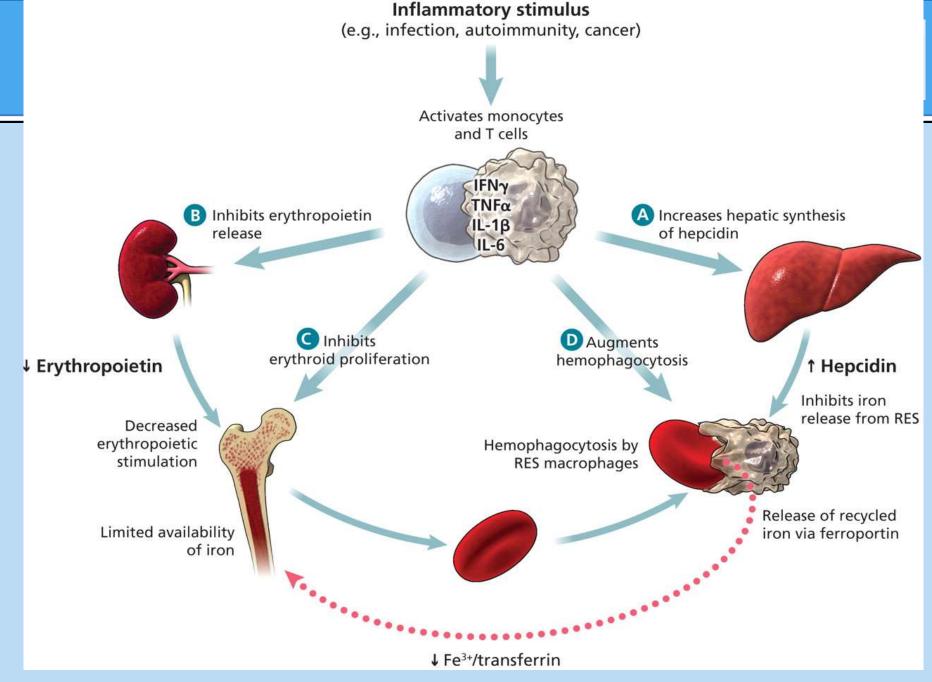
Анемия хронической болезни или воспаления

инвепор йохгоениносх имиену

- Вторая по распространенности после ЖДА
- Является приобретенным осложнением хронических процессов (рак, диабет, ревматоидный артрит, желудочно- кишечные заболевания, травмы, ССЗ)
- Вызвана нарушением распределения железа из пула хранения в функционально активный пул.
- Железо блокировано внутри макрофагов и энтероцитов и недоступно для эритропоэза.
- Связана с иммунной системой

Основные механизмы АХБ

- В ответ на синтез провоспалительных цитокинов (IL-6) макрофагами и моноцитами в печени синтезируется повышенное количество гепсидина
- Гепсидин белок острой фазы
- Повышение концентрации гепсидина сопровождается снижением уровня железа и НТ более чем на 30%
- Гепсидин вызывает деградацию ферропортина и препятствует использованию железа запаса из энтероцитов и макрофагов


Гепсидин - ключевой медиатор АХБ

- Ген, кодирующий гепсидин это острофазный ген, увеличение синтеза которого происходит при воспалительной реакции.
- Повышение синтеза гепсидина при воспалении или инфекции приводит к накопление железа в клетках, которые в физиологических условиях должны его отдавать (энтероциты, макрофаги, гепатоциты)
- Недоступность железа для синтеза эритроцитов приводит к нарушению эритропоэза и развитию умеренной/средней анемии

Шевченко О.П. Гепсидин - гормон, регулирующий обмен железа. Лаборатория, №3, 2010

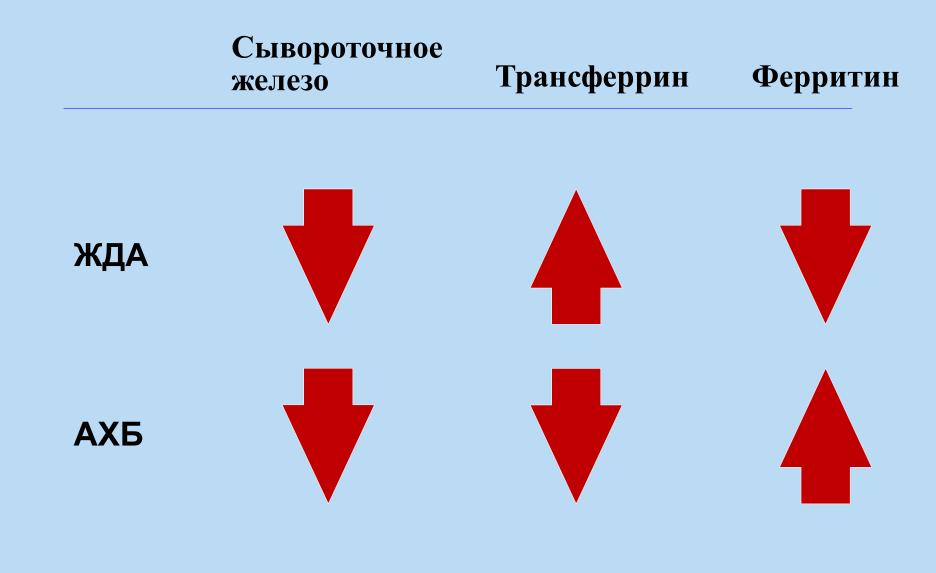
другие межанизмы развития АЖБ диакон развития АЖБ

- Провоспалительные цитокины (IL-1β и TNFα) ингибируют выход ЕРО из почек
- Уменьшение уровня ЕРО приводит к нарушению нормального процесса эритропоэза
- Прямое ингибирование цитокинами (IL-1β и TNFα)
 пролиферации эритроидных предшественников
- При АХБ продолжительность жизни эритроцита снижается за счет активации макрофагов, уничтожающих эритроциты

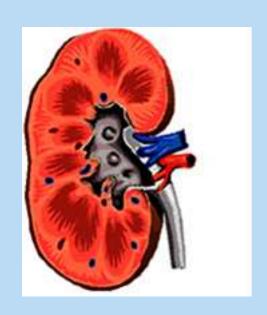
R. Zarychanski, D.S. Houston, Anemia of chronic disease. CMAJ • August 12, 2008; 179 (4)

АХБ как адаптивный физиологический ответ

- Блокируя железо внутри макрофагов, гепсидин лишает бактерии этого элементы, что тормозит их рост и препятствует образованию биопленок
- Такой же эффект показан для опухолевых клеток
- Блокирование железа приводит к снижению образования свободных радикалов, катализируемых свободными ионами железа и снижению оксидативного стресса, характерного для воспаления
- Таким образом, гепсидин является связующим звеном между механизмами естественной защиты организма, воспаления и обмена железа

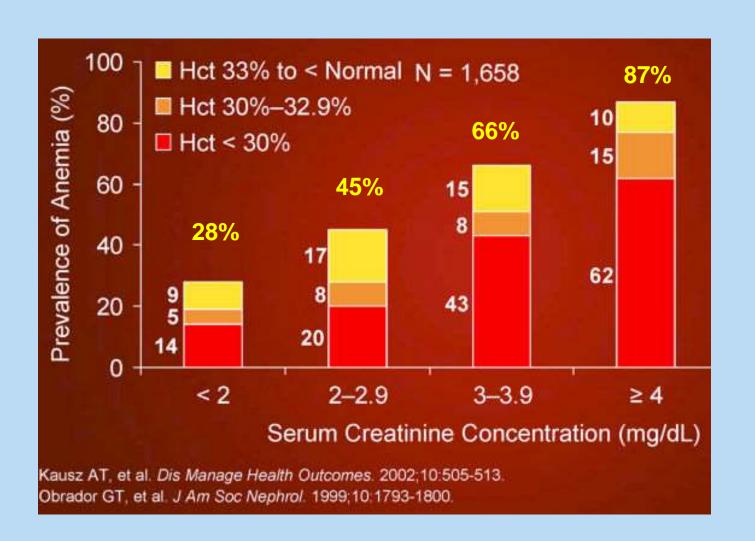

J. Malyszko, V. Mysliwiec Hepsidin in Anemia and Inflammation in Chronic Kidney Disease. Kidney Blood Pressure, 30, 2007

Лабораторные параметры при АХБ


Показатель	Значение
Общий анализ крови	Нормохромная, нормоцитарная анемия. При длительном течении микроцитарная гипохромная. Низкая концентрация ретикулоцитов
Сывороточное железо	Снижено
ОЖСС	Снижена или нормальная
Ферритин	Нормальный или повышен
Трансферрин	Снижен или нормальный
Насыщение трансферрина	< 15%
Уровень sTfR	Нормальный
Соотношение концентрации sTfR/log концентрации ферритина	Низкое (<1)

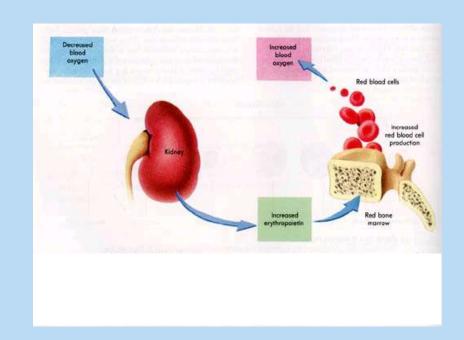
ЖДА и Анемия хронической болезни

Нарушение утилизации железа – анемия почечной болезни (АПБ)


Анемия почечной болезни

- Наиболее раннее и частое осложнение при ХБП Наблюдается при:
- Снижении клиренса креатинина до 40–60 мл/мин (III стадия ХПБ)
- В случае диабетической нефропатии (ДН) на более ранних стадиях ХПБ - при СКФ < 90 мл/мин/1,73м2 у мужчин и < 70 мл/мин/1,73м2 у женщин.
- К III стадии ХБП более 20% больных ДН имеют анемию
- Программном гемодиализе (ГД): при отсутствии лечения уровень гемоглобина < 10 г/дл обычно наблюдается более чем у 90% больных.

Риск анемии возрастает с ухудшением ренальной функции



Причины АПБ

- Снижение продукции
 ЭПО вследствие уменьшения массы функционирующей ткани почек
- Сокращение срока жизни эритроцитов со 120 до 70-80 дней
- Снижение доступности железа для эритропоэза
- Ингибирование эритропоэза в результате хронического воспаления

Анемия почечной болезни

- Пациенты с АПБ имеют состояние слабого/умеренного хронического воспаления
- Ухудшение ренальной функции может усиливать общий воспалительный ответ вследствие снижения ренального клиренса факторов, вовлеченных в воспалительный процесс (TNF-α, IL-1)
- Концентрация воспалительных белков (СРБ или IL-6) обратно пропорциональна клиренсу креатинина.
- J. Malyszko, V. Mysliwiec Hepsidin in Anemia and Inflammation in Chronic Kidney Disease. Kidney Blood Pressure, 30, 2007

Анемия почечной болезни

- У пациентов с нарушением почечной функции и анемией обнаруживается повышенный уровень гепсидина
- Взаимодействие провоспалительных цитокинов с гепсидином может объяснять тот факт, что такие пациенты имеют:
- Высокий ферритин
- Сниженную абсорбцию железа
- Нарушенный выход железа из макрофагов
- J. Malyshko, M.Mysliwets. Hepsidin in Anemia and Inflammation in Chronic Kidney Disesase

Диагностика анемии почечной болезни

Первичное клинико-лабораторное обследование включает следующие показатели:

- Концентрация гемоглобина (для определения степени анемии) При ХПБ <11,5 г/дл у женщин, и <13,5 г/дл у мужчин)
- Эритроцитарные индексы МСV и МСН (для выявления типа анемии). При ХПБ анемии нормоцитарные, нормохромные
- Количество ретикулоцитов (для оценки активности эритропоэза)
- Концентрация ферритина в плазме или сыворотке (для оценки запасов железа)
- Количества железа, доступного для эритропоэза (НТ в плазме или сыворотке)

Коррекция анемии при ХПБ

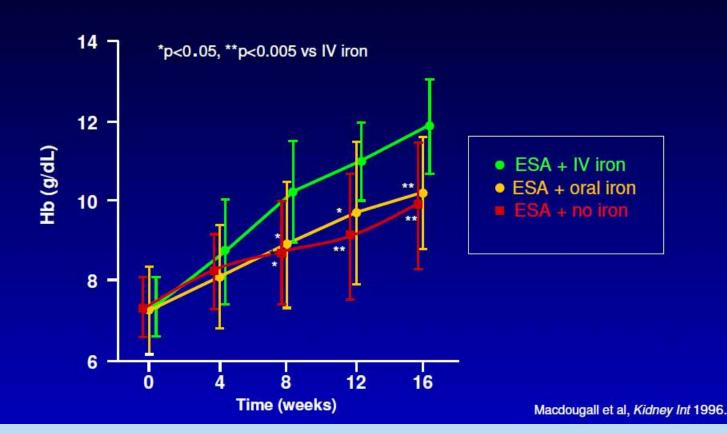
Используются препараты рекомбинантного ЭПО, которые:

- Купируют симптомы анемии
- Снижают частоту ее осложнений
- Улучшают показатели качества жизни пациентов
- Снижают заболеваемость и смертность больных на ЗПТ за счет сердечно- сосудистых и инфекционных осложнений
- Способствуют значительному повышению уровня Hb и снижению потребности в трансфузионной терапии

Баланс железа при ХПБ

- У пациентов с ХПБ, получающих терапию рчЭПО часто наблюдается состояние функционального железодефицита (высокий ферритин при низком значении НТ)
- Проявляется в результате несоответствия между повышенной скоростью продукции эритроцитов и недостаточным количеством доступного железа
- У пациентов на гемодиализе концентрация ферритина может превышать 500 нг/мл (до 2000 нг/мл), а НТ < 20%
- При гемохроматозе ферритин > 2000 нг/мл, а НТ > 50 %

Рекомендации американского общества нефрологов (KVDOGI) диагностические системы


- После тщательного изучения литературных данных рабочая группа по анемии K/DOQI пришла к заключению, что:
- Сывороточный ферритин и насыщение трансферрина (НТ) являются основными показателями оценки эффективности терапии железом для пациентов с анемией и XПН, включая терминальную стадию (ESRD)
- Уровень сывороточного ферритина выше 800 нг/мл предел для внутривенного введения препаратов железа
- Эта рекомендация основана на мнении большого числа специалистов, а не на доказательствах (opinion-based, but not evidence-based cut-off)

Clin J Am Soc Nephrol, 1:S4-S8,2006

Внутривенное железо усиливает ответ на ЭПО и снижает его дозу

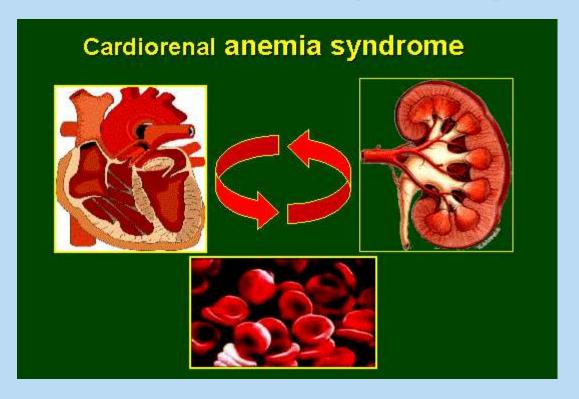
Better Hb response with IV iron compared to oral or no iron (with ESA)

IV Iron (without EPO) in NDCKD Patients

- 60 non-dialysis CKD patients (Hb <11 g/dl; ferritin <200 μg/l)
 - treated with IV iron sucrose 200 mg/month for 12 months
 - no EPO

Ferritin:

 $95.4 \rightarrow 325.2 \,\mu g/l$


TSAT:

21.6% → 33.6%

No change in eGFR or BP; no A/E

Кардио - ренальный анемический синдром (КРАС)

50 % пациентов с XПН третьей и четвертой стадии 75 % пациентов с XПН пятой стадии

Obrador GT et al. Trends in anemia at initiation of dialysis in the United States. *Kidney Int* 2001;60:1875–84.

22 % пациентов с СН

Go AS et al. Hemoglobin level, chronickidney disease, and the risks of death and Hospitalization in adults with chronic heart failure: the Anemia in Chronic Heart Failure:Outcomes and Resource Utilization (ANCHOR) Study. Circulation 2006;113:271.

37 % пациентов с ХСН

Groenveld HF et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol 2008;52:818–27.

Анемия повышает риск:

- прогрессирования от умеренной XПН -
 - к зависимости от диализа,
 - к госпитализации с ЗСН и ОИМ
- Анемия пятый главный фактор сердечно-сосудистого риска.
 - Silverberg D et al. Anemia, the fifth major cardiovascular risk factor. *Transfus Med Hemother 2004; 31:175–9.*
- Взаимодействие между ХПН, анемией и хронической сердечной недостаточностью образуют «порочный круг», называемый

Кардио -ренальным анемическим синдромом

сантабом узрачо- Бензирный *знемилаский*

Каждая патология стимулирует развитие и ускорение двух других

CC3

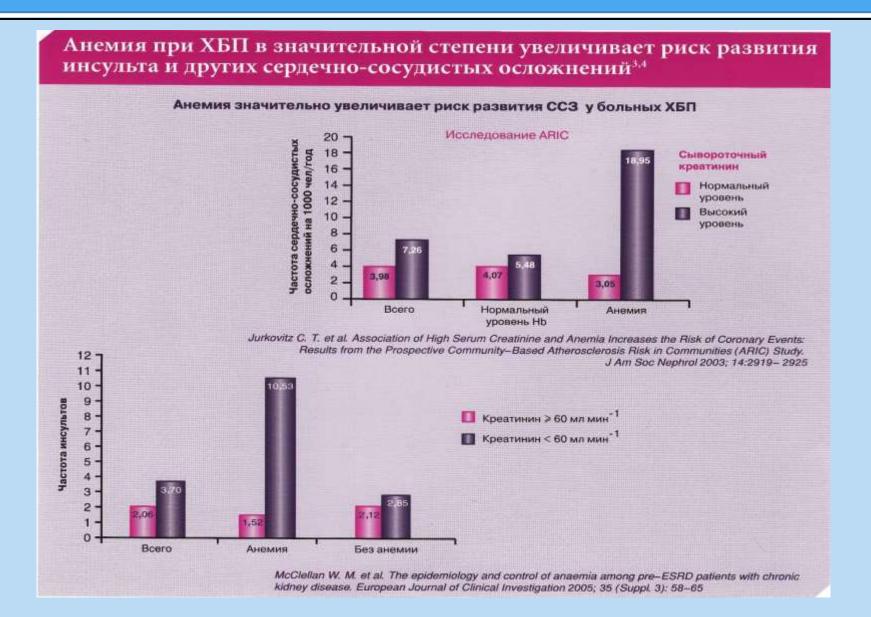
Патофизиология КРАС

G. Efstradiatis, et al. Cardio-renal anemia syndrome. Hippokratia, 2008, 12 (1) p.11-16

Причины анемии у пациентов с ХСН

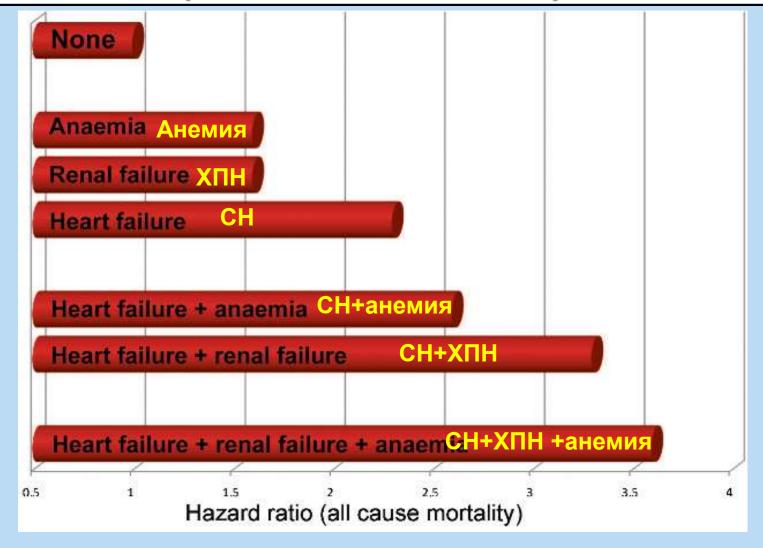
- Сниженная ренальная функция
- Сниженная продукция ЭПО
- Повышенный синтез TNF-α кардиомиоцитами вследствие их повреждения (развитие АХБ)
- Повышенный внеклеточный объем (вследствие задержки солей и жидкости, что приводит к гемодилюции)
- Дефицит железа, фолиевой кислоты и витамина В12 (вследствие их сниженного потребления и потери небольшого количества крови из желудочно-кишечного тракта при использовании аспирина и антикоагулянтов)
- Лекарственные препараты (ингибиторы АПФ)

Анемия и ХСН


- Анемия любой этиологии способна вызывать застойную XCH
- Анемии усугубляют тяжесть сердечной недостаточности и могут вызвать ее прогрессирование.
- Мета-анализ, проведенный на 150 000 пациентах с ХСН показал, что анемия наблюдалась у 37 %. При этом риск смертности возрастал в 2 раза

Van der Meer H., et al. Erythropoetin treatment in patients with chronic heart failure: a meta-analysis. Heart, 2009, 95, p.1278-79

 Анемия ассоциируется с неблагоприятными исходами у больных с заболеваниями почек и сердца. Частота выживаемости выше у пациентов с гематокритом 40% или более (исследования SOLVD, 6563 пациента)


А.М. Шилов, М.В. Мельник, А.А. Сарычева Анемии при сердечной Недостаточности, Русский Медицинский Журнал, 2003

Анемия при X5П увеличивает риск развития кон инсульта и других СС осложнений диагностические

ХПН, СН и анемия: кумулычыный риск летальности (1000 000 пациентов)

Heart 2009;95:1808–1812.

Рекомендации

ские

На каждой стадии XПН следует определять:

- тяжесть почечной недостаточности,
- риск или наличие ССЗ
- наличие анемии
- и проводить
- их одновременную терапию и
- мониторинг их динамики

Для эффективной диагностики и назначения правильного лечения следует проводить комплексную оценку показателей метаболизма железа и перейти от определения *концентрации железа* к оценке статуса железа

Crarye Meneral

Диагностическая оценка статуса железа основана на измерении:

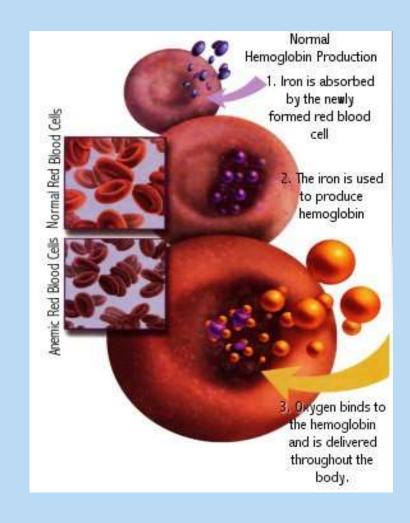
- Эритроцитарных индексов (МСV, МСН)
- Активности эритропоэза (ретикулоциты)
- Метаболического железа (гемоглобин)
- Железа запаса (ферритин)
- Транспортного железа (трансферрин)

Лабораторная оценка метаболизма железа и его нарушений

полему недостатолное железон только сыворотолное железоны

- Содержание железа в сыворотке крови составляет 0.2
 0.5% всего железа в организме
- Выраженное снижение концентрации железа в сыворотке крови может быть отмечено при дефиците железа в организме, но для диагностики латентной анемии недостаточно только его определения
- Уровень железа в сыворотке имеет циркадные ритмы: суточные, недельные и сезонные. Различия в содержании железа утром и вечером достигают
 0.5 мг/л. Взятие крови на определение железа должно быть стандартизовано по времени (в 7-10 часов утра)

Пабораторные параметры при нарушениях метаболизма железа


Нарушение метаболизма железа	Ферритин	Трансферрин	HT	Сывороточное железо
ЖДА		Î		
Железораспредели- тельная анемия (АХБ)				
Перегрузка железом				Î

Komunekchoe nechelossi kuti keenem Komunekchoe nechelossi kuti keenem Komunekchoe nechelossi his etsityesi

- Концентрация железа в сыворотке (плазме) крови
- ОЖСС
- НЖСС
- Уровень трансферрина и насыщение трансферрина железом
- Растворимые рецепторы трансферрина
- Ферритин
- Гемоглобин
- С реактивный белок

LYCKAKOH

Мы работаем для того, чтобы вы приняли правильное решение

142290, Пущино, МО, ул. Грузовая д.1а

Тел.: (495) 980-63-39

Тел/факс: (495) 980-66-79

E-mail: sale@diakonlab.ru http://www.diakonlab.ru

117452, Москва, Внутренний проезд, д. 8, строение 9,

Тел.: (499) 788-78-10, Тел/факс: (499) 788-78-12